Geotechnical Earthquake Engineering

Institution: DICAR (UNIPV)

Major: ROSE

Term: 2nd Semester – Academic Year 2017-2018

Instructor: Carlo G. Lai(

CFU: 6


Duration: 01-03-2018 – 10-06-2018 (48 hrs lectures + 10 hrs tutoring)

Schedule: Wed and Thu 4–6 PM

Office hours: Fri 4–6 PM or by appointment



Scope of the course is to introduce students to the basic theories and methods of soil dynamicsand earthquake geotechnical engineering. Topics covered include wave propagation, ground response analyses, phenomena of ground failure like soil liquefaction, seismic instability of slopes, surface fault rupture.The course consists of lectures to illustrate the theory and tutorial sessions where the emphasis is on applications and problem solving. Each subject is illustrated with the support of experimental and observational evidences, mathematical modeling and well-documented case histories from major earthquakes worldwide drawn from the experience of the instructor.



Review of seismic hazard, risk, vulnerability and exposure. Macro- and micro- zonation of a territory. Ground motion intensity measures. Fourier analysis and response spectra. Signal processing of earthquake records. FFT algorithm, aliasing and Nyquist criterion. Spectrograms. Introduction to seismometry. Analog and digital instruments, strong-motion accelerometric datasets. Basic concepts of elastodynamics. P and S waves, stationary oscillations. Propagation of elastic waves in heterogeneous continua. Fermat’s principle and Snell’s law. Zoeppritz equations. Rayleigh and Love surface waves. Introduction to Biot’s theory and Gassmann equations. Ground response analyses. Concept of transfer function. Material damping. Examples of ground amplification. Linear and linear-equivalent ground response analyses. Introduction to fully non-linear analyses. CFL stability condition and grid dispersion. Topographic amplification. Basin effects. Site characterization. Experimental measurement of dynamic properties of soils. Geophysical seismic tests. Phenomena of seismic geotechnical risk. Liquefaction and cyclic mobility. Critical state theory. Constitutive modeling of dynamic behaviour of soils. Simplified methods for the assessment of liquefaction susceptibility and ground deformation. Co-seismic and post-seismic instability of natural slopes. Pseudo-static analyses and Newmark method. Mitigation measures.



Basic knowledge of geotechnical engineering and mechanics of deformable body



  • Kramer, S. (1996). Geotechnical Earthquake Engineering. Prentice-Hall, pp. 653. Reference textbook.
  • Kokusho, T. (2017). Innovative Earthquake Soil Dynamics. CRC Press, pp. 478. Reference textbook.
  • Ishihara, K. (1996). Soil Behaviour in Earthquake Geotechnics. Oxford Press, pp. 350. Reference monograph on soil dynamics and dynamic laboratory tests.
  • Verruijt, A. (2010). An Introduction to Soil Dynamics. Springer-Verlag, New York, 431 pp. Reference textbook on theoretical soil dynamics.
  • Course notes, scientific articles and other material will be provided during the course.



Assignments will be handedover and graded during the course.The final examination will consist of a 3 hours, written test. The final-exam format is closed-book. An equation-sheet will be provided if needed. Grading: 40% assignments, 60% final exam.